E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower

AC/DC Formulas				
To Find	Direct Current	AC / 1phase 115 v or 120 v	$\begin{gathered} \text { AC / 1 phase } \\ 208,230 \text {, or } 240 \mathrm{v} \end{gathered}$	AC 3 phase All Voltages
Amps when Horsepower is Known	$\frac{H P \times 746}{E \times E f f}$	$E \frac{H P \times 746}{E \times f f} \times P F$	$\frac{H P \times 746}{E \times E f f \times P F}$	$1.73 \frac{\mathrm{HP} \times 746}{\mathrm{xE} \times \mathrm{Eff} \times \mathrm{PF}}$
Amps when Kilowatts is known	$\frac{\mathrm{kW} \times 1000}{\mathrm{E}}$	$\frac{\mathrm{kW} \times 1000}{\mathrm{E} \times P F}$	$\frac{\mathrm{kW} \times 1000}{\mathrm{E} \times \mathrm{PF}}$	$\frac{\mathrm{kW} \times 1000}{1.73 \times \mathrm{E} \times \mathrm{PF}}$
Amps when kVA is known		$\frac{\mathrm{kVA} \times 1000}{\mathrm{E}}$	$\frac{\mathrm{kVA} \times 1000}{\mathrm{E}}$	$\frac{\mathrm{kVA} \times 1000}{1.73 \times \mathrm{E}}$
Kilowatts	$\frac{1 \times E}{1000}$	$\frac{1 \times \mathrm{ExPF}}{1000}$	$\frac{\mathrm{IXE} \mathrm{\times PF}}{1000}$	$\frac{I \times \mathrm{E} \times 1.73 \mathrm{PF}}{1000}$
Kilovolt-Amps		$\frac{1 \times E}{1000}$	$\frac{1 \times E}{1000}$	$\frac{1 \times E \times 1.73}{1000}$
Horsepower (output)	$\frac{1 \times E \times E f f}{746}$	$\frac{1 \times E \times E f f x}{\frac{P F}{746}}$	$\frac{1 \times \text { ExEff } x}{\frac{P F}{746}}$	$\frac{I \times E \times E f f \times 1.73 \times}{\frac{P F}{746}}$

Three Phase Values

For 208 volts $\times 1.732$, use 360
For 230 volts $\times 1.732$, use 398
For 240 volts $\times 1.732$, use 416
For 440 volts x 1.732 , use 762
For 460 volts x 1.732 , use 797
For 480 Volts $\times 1.732$, use 831

E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower

AC Efficiency and Power Factor Formulas

To Find	Single Phase	Three Phase
Efficiency	$\frac{746 \times \mathrm{HP}}{\mathrm{E} \times 1 \times \mathrm{PF}}$	$\mathrm{E} \times \frac{746 \times \mathrm{HP}}{} \times \mathrm{PF} \times 1.732$
Power Factor	$\frac{\text { Input Watts }}{\mathrm{V} \times \mathrm{A}}$	$\frac{\operatorname{Input} \text { Watts }}{\mathrm{E} \times 1 \times 1.732}$

Power - DC Circuits
Watts $=$ E xI
Amps $=$ W $/$ E

Voltage Drop Formulas			
Single Phase (2 or 3 wire)	$\mathrm{VD}=$	$\frac{2 \times K \times I \times L}{C M}$	K = ohms per mil foot
	$\mathrm{CM}=$	$\frac{2 K \times L \times I}{V D}$	(Copper = 12.9 at 75
Three Phase	$\mathrm{VD}=$	$\frac{1.73 \times K \times I \times L}{C M}$	(Alum = 21.2 at 75°) Note: K value changes with temperature. See Code chapter 9,
	$\mathrm{CM}=$	$\frac{1.73 \times K \times L \times I}{V D}$	$\begin{aligned} & \mathbf{L}=\text { Length of conductor in feet } \\ & \mathbf{I}=\text { Current in conductor (amperes) } \\ & \mathbf{C M}=\text { Circular mil area of conductor } \end{aligned}$

If there is anything you would like to add or if you have any comments please feel free to email E.T.E. at tchism@elec-toolbox.com.

Back to Main Page

For balanced 3-phase loads, either wye or delta:
$\operatorname{Power}(\mathrm{kW})=($ Volts X Amps X Square root of 3 X Power Factor $) / 1000$
Amps $=(\operatorname{Power}(\mathrm{kW}) \mathrm{X}$ 1000) $/($ Volts X Sqrt3 X Power Factor $)$
If the load contains only resistance, the power factor is 1 and doesn't affect the calculation. If the load is a motor, the power factor is probably about 0.85 at full load and could be less than 0.25 when the motor is lightly loaded.

