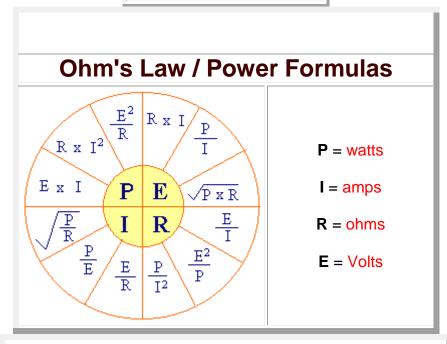
| AC/DC Formulas                      |                           |                                          |                                          |                                                 |  |
|-------------------------------------|---------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------|--|
| To Find                             | Direct                    | AC / 1phase                              | AC / 1phase                              | AC 3 phase                                      |  |
|                                     | Current                   | 115v or 120v                             | 208,230, or 240v                         | All Voltages                                    |  |
| Amps when<br>Horsepower is<br>Known | HP x 746<br>E x Eff       | <u>HP x 746</u><br>E x Eff X PF          | <u>HP x 746</u><br>E x Eff x PF          | <u>HP x 746</u><br>1.73 x E x Eff x PF          |  |
| Amps when                           | <u>kW x 1000</u>          | <u>kW x 1000</u>                         | <u>kW x 1000</u>                         | <u>kW x 1000</u>                                |  |
| Kilowatts is known                  | E                         | E x PF                                   | E x PF                                   | 1.73 x E x PF                                   |  |
| Amps when                           |                           | <u>kVA x 1000</u>                        | <u>kVA x 1000</u>                        | <u>kVA x 1000</u>                               |  |
| kVA is known                        |                           | E                                        | E                                        | 1.73 x E                                        |  |
| Kilowatts                           | <u>I x E</u>              | <u>I x E x PF</u>                        | <u>I x E x PF</u>                        | <u>I x E x 1.73 PF</u>                          |  |
|                                     | 1000                      | 1000                                     | 1000                                     | 1000                                            |  |
| Kilovolt-Amps                       |                           | <u>I x E</u><br>1000                     | <u>I x E</u><br>1000                     | <u>l x E x 1.73</u><br>1000                     |  |
| Horsepower<br>(output)              | <u>I x E x Eff</u><br>746 | <u>I x E x Eff x</u><br><u>PF</u><br>746 | <u>I x E x Eff x</u><br><u>PF</u><br>746 | <u>I x E x Eff x 1.73 x</u><br><u>PF</u><br>746 |  |

#### E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower

## **Three Phase Values**

For 208 volts x 1.732, use 360 For 230 volts x 1.732, use 398 For 240 volts x 1.732, use 416 For 440 volts x 1.732, use 762 For 460 volts x 1.732, use 797 For 480 Volts x 1.732, use 831


#### E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower

| AC Efficiency and Power Factor Formulas |                               |                                       |  |  |  |
|-----------------------------------------|-------------------------------|---------------------------------------|--|--|--|
| To Find                                 | Single Phase                  | Three Phase                           |  |  |  |
| Efficiency                              | <u>746 x HP</u><br>E x I x PF | <u>746 x HP</u><br>E x I x PF x 1.732 |  |  |  |
| Power Factor                            | Input Watts<br>V x A          | Input Watts<br>E x I x 1.732          |  |  |  |
|                                         |                               |                                       |  |  |  |

# Power - DC Circuits

Watts = E xI

Amps = **W / E** 



| Voltage Drop Formulas         |      |                               |                                                                                                                                                                              |  |  |  |
|-------------------------------|------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Single Phase<br>(2 or 3 wire) | VD = | 2xKxIxL<br>CM                 | <ul> <li>K = ohms per mil foot</li> <li>(Copper = 12.9 at 75°)</li> <li>(Alum = 21.2 at 75°)</li> <li>Note: K value changes with temperature. See Code chapter 9,</li> </ul> |  |  |  |
|                               | CM=  | VD                            |                                                                                                                                                                              |  |  |  |
| Three Phase                   | VD=  | <u>1.73 x K x I x L</u><br>CM |                                                                                                                                                                              |  |  |  |
|                               | CM=  | <u>1.73 x K x L x I</u><br>VD | Table 8<br>L = Length of conductor in feet                                                                                                                                   |  |  |  |
|                               |      |                               | I = Current in conductor (amperes)                                                                                                                                           |  |  |  |
|                               |      |                               | CM = Circular mil area of conductor                                                                                                                                          |  |  |  |

Check out these Online Calculators!

If there is anything you would like to add or if you have any comments please feel free to email E.T.E. at <u>tchism@elec-toolbox.com.</u>

Back to Main Page

### 2007, Electricians Toolbox Etc...



For balanced 3-phase loads, either wye or delta:

Power(kW) = (Volts X Amps X Square root of 3 X Power Factor) / 1000

Amps = (Power(kW) X 1000) / (Volts X Sqrt3 X Power Factor)

If the load contains only resistance, the power factor is 1 and doesn't affect the calculation. If the load is a motor, the power factor is probably about 0.85 at full load and could be less than 0.25 when the motor is lightly loaded.